Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Neurology ; 102(9): e209304, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626375

RESUMO

BACKGROUND AND OBJECTIVES: Although commonly used in the evaluation of patients for epilepsy surgery, the association between the detection of localizing 18fluorine fluorodeoxyglucose PET (18F-FDG-PET) hypometabolism and epilepsy surgery outcome is uncertain. We conducted a systematic review and meta-analysis to determine whether localizing 18F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery. METHODS: A systematic literature search was undertaken. Eligible publications included evaluation with 18F-FDG-PET before epilepsy surgery, with ≥10 participants, and those that reported surgical outcome at ≥12 months. Random-effects meta-analysis was used to calculate the odds of achieving a favorable outcome, defined as Engel class I, International League Against Epilepsy class 1-2, or seizure-free, with localizing 18F-FDG-PET hypometabolism, defined as concordant with the epilepsy surgery resection zone. Meta-regression was used to characterize sources of heterogeneity. RESULTS: The database search identified 8,916 studies, of which 98 were included (total patients n = 4,104). Localizing 18F-FDG-PET hypometabolism was associated with favorable outcome after epilepsy surgery for all patients with odds ratio (OR) 2.68 (95% CI 2.08-3.45). Subgroup analysis yielded similar findings for those with (OR 2.64, 95% CI 1.54-4.52) and without epileptogenic lesion detected on MRI (OR 2.49, 95% CI 1.80-3.44). Concordance with EEG (OR 2.34, 95% CI 1.43-3.83), MRI (OR 1.69, 95% CI 1.19-2.40), and triple concordance with both (OR 2.20, 95% CI 1.32-3.64) was associated with higher odds of favorable outcome. By contrast, diffuse 18F-FDG-PET hypometabolism was associated with worse outcomes compared with focal hypometabolism (OR 0.34, 95% CI 0.22-0.54). DISCUSSION: Localizing 18F-FDG-PET hypometabolism is associated with favorable outcome after epilepsy surgery, irrespective of the presence of an epileptogenic lesion on MRI. The extent of 18F-FDG-PET hypometabolism provides additional information, with diffuse hypometabolism associated with worse surgical outcome than focal 18F-FDG-PET hypometabolism. These findings support the incorporation of 18F-FDG-PET into routine noninvasive investigations for patients being evaluated for epilepsy surgery to improve epileptogenic zone localization and to aid patient selection for surgery.


Assuntos
Epilepsia , Fluordesoxiglucose F18 , Humanos , Fluordesoxiglucose F18/metabolismo , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia/metabolismo , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética
2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496668

RESUMO

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

3.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411286

RESUMO

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Síndromes Epilépticas , Adulto , Humanos , Epilepsia do Lobo Temporal/complicações , Fenitoína , Estudos Transversais , Síndromes Epilépticas/complicações , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Convulsões/complicações , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
4.
BMJ Neurol Open ; 6(1): e000553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268757

RESUMO

Introduction: Atypical parkinsonian syndromes (APS) are rare neurodegenerative syndromes for which parkinsonism is one significant feature. APS includes progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and corticobasal syndrome (CBS). The diagnosis of APS remains reliant on clinical features with no available diagnostic or prognostic biomarker. Clinical scales remain the gold standard assessment measures in clinical trials and research. The lack of standardised approach for research cohorts has contributed to shortcomings in disease understanding and limits collaboration between researchers. The primary objectives of this study are to (1) establish an assessment protocol for parkinsonian syndromes and (2) to implement it at a single site to establish the viability and utility of populating a clinical and biological databank of patients with APS. Methods: The Monash Alfred Protocol for Assessment of APS was devised by expert consensus within a broad multidisciplinary team. Eligible patients are diagnosed as possible or probable PSP, MSA or CBS by a consultant neurologist with expertise in movement disorders. Participants will be assessed at recruitment and then annually for up to 3 years; individuals within 5 years of index symptom onset will also undergo a once-off 6-month assessment. Ethics and dissemination: Each participant or their legally authorised representative will provide informed written consent prior to commencement of the study. Data will be stored on a locally hosted Research Electronic Data Capture database. Trial registration number: Australian New Zealand Clinical Trials Registry (ANZCTN 12622000923763).

5.
Epilepsia Open ; 9(1): 60-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041607

RESUMO

Stroke is one of the most common causes of acquired epilepsy, which can also result in disability and increased mortality rates particularly in elderly patients. No preventive treatment for post-stroke epilepsy is currently available. Development of such treatments has been greatly limited by the lack of biomarkers to reliably identify high-risk patients. The glymphatic system, including perivascular spaces (PVS), is the brain's waste clearance system, and enlargement or asymmetry of PVS (ePVS) is hypothesized to play a significant role in the pathogenesis of several neurological conditions. In this article, we discuss potential mechanisms for the role of perivascular spaces in the development of post-stroke epilepsy. Using advanced MR-imaging techniques, it has been shown that there is asymmetry and impairment of glymphatic function in the setting of ischemic stroke. Furthermore, studies have described a dysfunction of PVS in patients with different focal and generalized epilepsy syndromes. It is thought that inflammatory processes involving PVS and the blood-brain barrier, impairment of waste clearance, and sustained hypertension affecting the glymphatic system during a seizure may play a crucial role in epileptogenesis post-stroke. We hypothesize that impairment of the glymphatic system and asymmetry and dynamics of ePVS in the course of a stroke contribute to the development of PSE. Automated ePVS detection in stroke patients might thus assist in the identification of high-risk patients for post-stroke epilepsy trials. PLAIN LANGUAGE SUMMARY: Stroke often leads to epilepsy and is one of the main causes of epilepsy in elderly patients, with no preventative treatment available. The brain's waste removal system, called the glymphatic system which consists of perivascular spaces, may be involved. Enlargement or asymmetry of perivascular spaces could play a role in this and can be visualised with advanced brain imaging after a stroke. Detecting enlarged perivascular spaces in stroke patients could help identify those at risk for post-stroke epilepsy.


Assuntos
Epilepsia , Sistema Glinfático , Acidente Vascular Cerebral , Humanos , Idoso , Sistema Glinfático/patologia , Encéfalo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Epilepsia/etiologia , Biomarcadores
6.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961570

RESUMO

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

7.
BMJ Open ; 13(10): e075888, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37890967

RESUMO

INTRODUCTION: Epilepsy is one of the most common neurological conditions worldwide. Despite many antiseizure medications (ASMs) being available, up to one-third of patients do not achieve seizure control. Preclinical studies have shown treatment with sodium selenate to have a disease-modifying effect in a rat model of chronic temporal lobe epilepsy (TLE). AIM: This randomised placebo-controlled trial aims to evaluate the antiseizure and disease-modifying effects of sodium selenate in people with drug-resistant TLE. METHODS: This will be a randomised placebo-controlled trial of sodium selenate. One hundred and twenty-four adults with drug-resistant TLE and ≥4 countable seizures/month will be recruited. Outcomes of interest will be measured at baseline, week 26 and week 52 and include an 8-week seizure diary, 24-hour electroencephalogram and cognitive, neuropsychiatric and quality of life measures. Participants will then be randomised to receive a sustained release formulation of sodium selenate (initially 10 mg three times a day, increasing to 15 mg three times a day at week 4 if tolerated) or a matching placebo for 26 weeks. OUTCOMES: The primary outcome will be a consumer codesigned epilepsy-Desirability of Outcome Rank (DOOR), combining change in seizure frequency, adverse events, quality of life and ASM burden measures into a single outcome measure, compared between treatment arms over the whole 52-week period. Secondary outcomes will compare baseline measures to week 26 (antiseizure) and week 52 (disease modification). Exploratory measures will include biomarkers of treatment response. ETHICS AND DISSEMINATION: The study has been approved by the lead site, Alfred Hospital Ethics Committee (594/20). Each participant will provide written informed consent prior to any trial procedures. The results of the study will be presented at national and international conferences, published in peer-reviewed journals and disseminated through consumer organisations. CONCLUSION: This study will be the first disease-modification randomised controlled trial in patients with drug-resistant TLE. TRIAL REGISTRATION NUMBER: ANZCTR; ACTRN12623000446662.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Adulto , Humanos , Animais , Ratos , Ácido Selênico , Epilepsia do Lobo Temporal/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Convulsões , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como Assunto
8.
Seizure ; 113: 1-5, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847935

RESUMO

BACKGROUND: We investigated the value of automated enlarged perivascular spaces (ePVS) quantification to distinguish chronic traumatic brain injury (TBI) patients with post-traumatic epilepsy (PTE+) from chronic TBI patients without PTE (PTE-) in a feasibility study. METHODS: Patients with and without PTE were recruited and underwent an MRI post-TBI. Multimodal auto identification of ePVS algorithm was applied to T1-weighted MRIs to segment ePVS. The total number of ePVS was calculated and corrected for white matter volume, and an asymmetry index (AI) derived. RESULTS: PTE was diagnosed in 7 out of the 99 participants (male=69) after a median time of less than one year since injury (range 10-22). Brain lesions were observed in all 7 PTE+ cases (unilateral=4, 57%; bilateral=3, 43%) as compared to 40 PTE- cases (total 44%; unilateral=17, 42%; bilateral=23, 58%). There was a significant difference between PTE+ (M=1.21e-4, IQR [8.89e-5]) and PTE- cases (M=2.79e-4, IQR [6.25e-5]) in total corrected numbers of ePVS in patients with unilateral lesions (p=0.024). No differences in AI, trauma severity and lesion volume were seen between groups. CONCLUSION: This study has shown that automated quantification of ePVS is feasible and provided initial evidence that individuals with PTE with unilateral lesions may have fewer ePVS compared to TBI patients without epilepsy. Further studies with larger sample sizes should be conducted to determine the value of ePVS quantification as a PTE-biomarker.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Malformações do Sistema Nervoso , Substância Branca , Humanos , Masculino , Estudos de Viabilidade , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
Epilepsia Open ; 8(4): 1608-1615, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37799022

RESUMO

Interventional clinical trials in epilepsy are typically designed and powered to detect a change in seizure frequency as the primary endpoint, with little consideration given to other benefits or harms of the therapy, or impacts on common epilepsy comorbidities. Desirability of outcome ranking (DOOR) is a novel methodology for evaluating benefits and harms associated with introduction of a new treatment. Multiple outcomes are combined and the resulting combinations are ranked according to their desirability. Herein we describe the adaptation of DOOR for use in therapy trials in epilepsy. Consumers with epilepsy were presented with a selection of measures typically included in epilepsy trials and asked to rank their importance in terms of a desirable outcome and to identify interactions between different seizure control levels and other measures. Seizure control, adverse events, and psychiatric comorbidities were identified as most important, and combinations of these outcomes were ranked to form epilepsy-DOOR. A separate consumer discussion group verified the appropriateness and accuracy of the ranking. The resultant epilepsy-DOOR includes 60 possible outcomes, representing high granularity for the assessment of future interventions. It demonstrates the importance of consumer involvement in trial design and presents an alternative to seizure frequency for evaluating new treatments for epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Anticonvulsivantes/uso terapêutico , Epilepsias Parciais/induzido quimicamente , Epilepsias Parciais/tratamento farmacológico , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde
10.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37539645

RESUMO

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Adulto , Ratos , Masculino , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Ratos Wistar , Convulsões/tratamento farmacológico , Eletroencefalografia , Ácido gama-Aminobutírico , Modelos Animais de Doenças , Hipocampo
12.
J Alzheimers Dis ; 94(1): 19-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212100

RESUMO

Behavioral variant frontotemporal dementia (bvFTD) belongs to the spectrum of frontotemporal lobar degeneration (FTLD) and is characterized by frontal dysfunction with executive deficits and prominent socioemotional impairments. Social cognition, such as emotion processing, theory of mind, and empathy may significantly impact daily behavior in bvFTD. Abnormal protein accumulation of tau or TDP-43 are the main causes of neurodegeneration and cognitive decline. Differential diagnosis is difficult due to the heterogeneous pathology in bvFTD and the high clinicopathological overlap with other FTLD syndromes, especially in late disease stages. Despite recent advances, social cognition in bvFTD has not yet received sufficient attention, nor has its association with underlying pathology. This narrative review evaluates social behavior and social cognition in bvFTD, by relating these symptoms to neural correlates and underlying molecular pathology or genetic subtypes. Negative and positive behavioral symptoms, such as apathy and disinhibition, share similar brain atrophy and reflect social cognition. More complex social cognitive impairments are probably caused by the interference of executive impairments due to increasing neurodegeneration. Evidence suggests that underlying TDP-43 is associated with neuropsychiatric and early social cognitive dysfunction, while patients with underlying tau pathology are marked by strong cognitive dysfunction with increasing social impairments in later stages. Despite many current research gaps and controversies, finding distinct social cognitive markers in association to underlying pathology in bvFTD is essential for validating biomarkers, for clinical trials of novel therapies, and for clinical practice.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Cognição Social , Testes Neuropsicológicos , Degeneração Lobar Frontotemporal/patologia , Proteínas de Ligação a DNA , Cognição
13.
J Magn Reson Imaging ; 57(1): 11-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35866259

RESUMO

The brain's glymphatic system is a network of intracerebral vessels that function to remove "waste products" such as degraded proteins from the brain. It comprises of the vasculature, perivascular spaces (PVS), and astrocytes. Poor glymphatic function has been implicated in numerous diseases; however, its contribution is still unknown. Efforts have been made to image the glymphatic system to further assess its role in the pathogenesis of different diseases. Numerous imaging modalities have been utilized including two-photon microscopy and contrast-enhanced magnetic resonance imaging (MRI). However, these are associated with limitations for clinical use. PVS form a part of the glymphatic system and can be visualized on standard MRI sequences when enlarged. It is thought that PVS become enlarged secondary to poor glymphatic drainage of metabolites. Thus, quantitating PVS could be a good surrogate marker for glymphatic function. Numerous manual rating scales have been developed to measure the PVS number and size on MRI scans; however, these are associated with many limitations. Instead, automated methods have been created to measure PVS more accurately in different diseases. In this review, we discuss the imaging techniques currently available to visualize the glymphatic system as well as the automated methods currently available to measure PVS, and the strengths and limitations associated with each technique. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Sistema Glinfático , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Sistema Glinfático/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
14.
Front Neurosci ; 16: 1003522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340772

RESUMO

Background: Behavioural Variant Frontotemporal Dementia (bvFTD) is a rapidly progressing neurodegenerative proteinopathy. Perivascular spaces (PVS) form a part of the brain's glymphatic clearance system. When enlarged due to poor glymphatic clearance of toxic proteins, PVS become larger and more conspicuous on MRI. Therefore, enlarged PVS may be a useful biomarker of disease severity and progression in neurodegenerative proteinopathies such as bvFTD. This study aimed to determine the utility of PVS as a biomarker of disease progression in patients with bvFTD. Materials and methods: Serial baseline and week 52 MRIs acquired from ten patients with bvFTD prospectively recruited and followed in a Phase 1b open label trial of sodium selenate for bvFTD were used in this study. An automated algorithm quantified PVS on MRI, which was visually inspected and validated by a member of the study team. The number and volume of PVS were extracted and mixed models used to assess the relationship between PVS burden and other measures of disease (cognition, carer burden scale, protein biomarkers). Additional exploratory analysis investigated PVS burden in patients who appeared to not progress over the 12 months of selenate treatment (i.e., "non-progressors"). Results: Overall, PVS cluster number (ß = -3.27, CI [-7.80 - 1.27], p = 0.267) and PVS volume (ß = -36.8, CI [-84.9 - 11.3], p = 0.171) did not change over the paired MRI scans 12 months apart. There was association between cognition total composite scores and the PVS burden (PVS cluster ß = -0.802e-3, CI [9.45e - 3 - -6.60e - 3, p ≤ 0.001; PVS volume ß = -1.30e - 3, CI [-1.55e - 3 - -1.05e - 3], p ≤ 0.001), as well as between the change in the cognition total composite score and the change in PVS volume (ß = 4.36e - 3, CI [1.33e - 3 - 7.40e - 3], p = 0.046) over the trial period. There was a significant association between CSF t-tau and the number of PVS clusters (ß = 2.845, CI [0.630 - 5.06], p = 0.036). Additionally, there was a significant relationship between the change in CSF t-tau and the change in the number of PVS (ß = 1.54, CI [0.918 - 2.16], p < 0.001) and PVS volume (ß = 13.8, CI [6.37 - 21.1], p = 0.003) over the trial period. An association was found between the change in NfL and the change in PVS volume (ß = 1.40, CI [0.272 - 2.52], p = 0.045) over time. Within the "non-progressor" group (n = 7), there was a significant relationship between the change in the CSF total-tau (t-tau) levels and the change in the PVS burden (PVS cluster (ß = 1.46, CI [0.577 - 2.34], p = 0.014; PVS volume ß = 14.6, CI [3.86 - 25.4], p = 0.032) over the trial period. Additionally, there was evidence of a significant relationship between the change in NfL levels and the change in the PVS burden over time (PVS cluster ß = 0.296, CI [0.229 - 0.361], p ≤ 0.001; PVS volume ß = 3.67, CI [2.42 - 4.92], p = 0.002). Conclusion: Analysis of serial MRI scans 12 months apart in patients with bvFTD demonstrated a relationship between PVS burden and disease severity as measured by the total cognitive composite score and CSF t-tau. Further studies are needed to confirm PVS as a robust marker of neurodegeneration in proteinopathies.

15.
Front Neurosci ; 16: 1021131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330347

RESUMO

Alzheimer's disease (AD) is a highly damaging disease that affects one's cognition and memory and presents an increasing societal and economic burden globally. Considerable research has gone into understanding AD; however, there is still a lack of effective biomarkers that aid in early diagnosis and intervention. The recent discovery of the glymphatic system and associated Perivascular Spaces (PVS) has led to the theory that enlarged PVS (ePVS) may be an indicator of AD progression and act as an early diagnostic marker. Visible on Magnetic Resonance Imaging (MRI), PVS appear to enlarge when known biomarkers of AD, amyloid-ß and tau, accumulate. The central goal of ePVS and AD research is to determine when ePVS occurs in AD progression and if ePVS are causal or epiphenomena. Furthermore, if ePVS are indeed causative, interventions promoting glymphatic clearance are an attractive target for research. However, it is necessary first to ascertain where on the pathological progression of AD ePVS occurs. This review aims to examine the knowledge gap that exists in understanding the contribution of ePVS to AD. It is essential to understand whether ePVS in the brain correlate with increased regional tau distribution and global or regional Amyloid-ß distribution and to determine if these spaces increase proportionally over time as individuals experience neurodegeneration. This review demonstrates that ePVS are associated with reduced glymphatic clearance and that this reduced clearance is associated with an increase in amyloid-ß. However, it is not yet understood if ePVS are the outcome or driver of protein accumulation. Further, it is not yet clear if ePVS volume and number change longitudinally. Ultimately, it is vital to determine early diagnostic criteria and early interventions for AD to ease the burden it presents to the world; ePVS may be able to fulfill this role and therefore merit further research.

16.
BMJ Open ; 12(10): e065440, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202585

RESUMO

INTRODUCTION: A substantial proportion of patients who undergo surgery for drug resistant focal epilepsy do not become seizure free. While some factors, such as the detection of hippocampal sclerosis or a resectable lesion on MRI and electroencephalogram-MRI concordance, can predict favourable outcomes in epilepsy surgery, the prognostic value of the detection of focal hypometabolism with 18F-fluorodeoxyglucose positive emission tomography (18F-FDG-PET) hypometabolism is uncertain. We propose a protocol for a systematic review and meta-analysis to examine whether localisation with 18F-FDG-PET hypometabolism predicts favourable outcomes in epilepsy surgery. METHODS AND ANALYSIS: A systematic literature search of Medline, Embase and Web of Science will be undertaken. Publications which include evaluation with 18F-FDG-PET prior to surgery for drug resistant focal epilepsy, and which report ≥12 months of postoperative surgical outcome data will be included. Non-human, non-English language publications, publications with fewer than 10 participants and unpublished data will be excluded. Screening and full-text review of publications for inclusion will be undertaken by two independent investigators, with discrepancies resolved by consensus or a third investigator. Data will be extracted and pooled using random effects meta-analysis, with heterogeneity quantified using the I2 analysis. ETHICS AND DISSEMINATION: Ethics approval is not required. Once complete, the systematic review will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42022324823.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsias Parciais/cirurgia , Epilepsia/cirurgia , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Metanálise como Assunto , Tomografia por Emissão de Pósitrons/métodos , Revisões Sistemáticas como Assunto
17.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144667

RESUMO

(1) Background: [18F]Flumazenil 1 ([18F]FMZ) is an established positron emission tomography (PET) radiotracer for the imaging of the gamma-aminobutyric acid (GABA) receptor subtype, GABAA in the brain. The production of [18F]FMZ 1 for its clinical use has proven to be challenging, requiring harsh radiochemical conditions, while affording low radiochemical yields. Fully characterized, new methods for the improved production of [18F]FMZ 1 are needed. (2) Methods: We investigate the use of late-stage copper-mediated radiofluorination of aryl stannanes to improve the production of [18F]FMZ 1 that is suitable for clinical use. Mass spectrometry was used to identify the chemical by-products that were produced under the reaction conditions. (3) Results: The radiosynthesis of [18F]FMZ 1 was fully automated using the iPhase FlexLab radiochemistry module, affording a 22.2 ± 2.7% (n = 5) decay-corrected yield after 80 min. [18F]FMZ 1 was obtained with a high radiochemical purity (>98%) and molar activity (247.9 ± 25.9 GBq/µmol). (4) Conclusions: The copper-mediated radiofluorination of the stannyl precursor is an effective strategy for the production of clinically suitable [18F]FMZ 1.


Assuntos
Cobre , Flumazenil , Cobre/química , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ácido gama-Aminobutírico
18.
Brain ; 145(11): 3859-3871, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35953082

RESUMO

One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection. We aimed to develop an open-source, interpretable, surface-based machine-learning algorithm to automatically identify FCDs on heterogeneous structural MRI data from epilepsy surgery centres worldwide. The Multi-centre Epilepsy Lesion Detection (MELD) Project collated and harmonized a retrospective MRI cohort of 1015 participants, 618 patients with focal FCD-related epilepsy and 397 controls, from 22 epilepsy centres worldwide. We created a neural network for FCD detection based on 33 surface-based features. The network was trained and cross-validated on 50% of the total cohort and tested on the remaining 50% as well as on 2 independent test sites. Multidimensional feature analysis and integrated gradient saliencies were used to interrogate network performance. Our pipeline outputs individual patient reports, which identify the location of predicted lesions, alongside their imaging features and relative saliency to the classifier. On a restricted 'gold-standard' subcohort of seizure-free patients with FCD type IIB who had T1 and fluid-attenuated inversion recovery MRI data, the MELD FCD surface-based algorithm had a sensitivity of 85%. Across the entire withheld test cohort the sensitivity was 59% and specificity was 54%. After including a border zone around lesions, to account for uncertainty around the borders of manually delineated lesion masks, the sensitivity was 67%. This multicentre, multinational study with open access protocols and code has developed a robust and interpretable machine-learning algorithm for automated detection of focal cortical dysplasias, giving physicians greater confidence in the identification of subtle MRI lesions in individuals with epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Estudos Retrospectivos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Epilepsias Parciais/diagnóstico por imagem
19.
Front Aging Neurosci ; 14: 915460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992608

RESUMO

In a large proportion of individuals with fronto-temporal lobar degeneration (FTLD), the underlying pathology is associated with the misfolding and aggregation of the microtubule associated protein tau (FTLD-tau). With disease progression, widespread protein accumulation throughout cortical and subcortical brain regions may be responsible for neurodegeneration. One of the syndromes of FTLD is the behavioral variant of frontotemporal dementia (bvFTD), in which the underlying pathology is heterogenous, with half of the cases being related to FTLD-tau. Currently, there are no approved disease-modifying treatments for FTLD-tau, therefore representing a major unmet therapeutic need. These descriptive, preliminary findings of the phase 1 open-label trial provide data to support the potential of sodium selenate to halt the cognitive and behavioral decline, as well as to reduce tau levels in a small group of participants with bvFTD (N = 11). All participants were treated with sodium selenate over a period of 52 weeks. Cognition was assessed with the Neuropsychiatry Unit Cognitive Assessment Tool (NUCOG, total scores), social cognition with the Revised Self-Monitoring Scale (RSMS, total scores), behavior with the Cambridge Behavioral Inventory (CBI), and carer burden with the Caregiver Buden Scale (CBS). Fluid biomarker measures include cerebrospinal fluid of total tau (t-tau), phosphorylated tau (p-tau181), NfL, p-tau181/t-tau, t-tau/Aß1-42, and p-tau181/Aß1-42 levels. After treatment at follow-up, cognition and behavior showed further negative change (based on a reliable change criterion cut-off of annual NUCOG decline) in the "progressors," but not in the "non-progressors." "Non-progressors" also showed elevated baseline CSF tau levels and no increase after treatment, indicating underlying tau pathology and a positive response to sodium selenate treatment. Significant changes in MRI were not observed. The findings provide useful information for future clinical trials to systematically assess the disease-modifying treatment effects of sodium selenate in randomized controlled designs for bvFTD and FTLD-tau pathologies.

20.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896547

RESUMO

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Assuntos
Conectoma , Epilepsia Generalizada , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Humanos , Imunoglobulina E , Imageamento por Ressonância Magnética , Rede Nervosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA